
Metaheuristics for the multicast tree
scheduling problem

Bachelor Thesis

Lukas F. Lang
e0504043@student.tuwien.ac.at

Accomplished at the
Database and Artificial Intelligence Group,

Institute for Information Systems,
Vienna University of Technology.

Supervised by Priv.-Doz. Dr. Nysret Musliu
(Vienna University of Technology) and

Priv.-Doz. Dr. Sandford Bessler
(Telecommunications Research Center Vienna).

April 26, 2010

1

2

Abstract

Since online streaming content and Video-On-Demand systems have
reached widespread distribution over the internet and the requested
content is known to originate from a long-tail Zipf distribution, multi-
casting has become a broadly adopted technique to deal with repeat-
edly requested content objects. Recently, rather new push-VoD tech-
niques have been tested where the content is pushed to the customer’s
local device in hours of low network utilization, e.g. at night. The Re-
peated Content Download Problem (RCDP) is to find a schedule for
such a system, which satisfies all requests with a minimal number of
time periods needed so that the requested content titles are transmit-
ted with a minimal number of repetitions. In this work, we propose
the application of metaheuristics such as Tabu Search, Variable Neigh-
borhood Search and Iterated Local Search to the problem and show
that even for large instances, acceptable runtimes can be achieved.

Keywords: Video-on-Demand, multicast, scheduling, Tabu Search,
Variable Neighborhood Search, Iterated Local Search.

Acknowledgments
I dedicate this work to my parents who supported me in any respect and
enabled my academic studies. I am deeply grateful.

My sincerest appreciation goes to Dr. Sandford Bessler and Dr. Nysret
Musliu for the inspiration I found in working with them. My thesis would
have not been possible without their effort.

I want to thank my colleagues from university and my friends for the endless
revealing discussions, the entertaining moments and their caring.

CONTENTS 3

Contents
1 Introduction 5

2 Problem definition and objectives 7
2.1 Formalization of the RCDP 7
2.2 Summary of symbols . 10
2.3 NP-Completeness . 10

3 IP formulation 12

4 Local search techniques 12
4.1 Hill Climbing . 14
4.2 Tabu Search . 15
4.3 Iterated Local Search . 15
4.4 Variable Neighborhood Search 17

5 Metaheuristic formulation of the RCDP 18
5.1 Search space . 18
5.2 Evaluation function . 19
5.3 Neighborhood structures . 20

5.3.1 Merge neighborhood 20
5.3.2 Min-conflict neighborhood 21
5.3.3 Shift neighborhood . 23
5.3.4 Compress neighborhood 25

6 Implementation 25

7 Experimental analysis 26
7.1 Statistical methods . 28
7.2 Instances . 28
7.3 Parameter determination . 29

7.3.1 Tabu length . 30
7.3.2 Perturbation size . 30

7.4 Results . 31

8 Conclusion and future work 33

LIST OF TABLES 4

List of Tables
1 Summary of symbols of the IP formulation. 13
2 Summary of variables measured. 27
3 Test instances used for the RCDP. 30
4 Summary of metaheuristics, parameters and values. 31
5 Comparison of various tabu lengths used for Tabu Search. . . 39
6 Perturbation size of ILS using Hill Climbing as embedded local

search. 39
7 Evaluation function. 40
8 Running times. 40
9 Splitting rate and top level utilization. 41
10 Neighborhood . 41

List of Figures
1 A tree-like content distribution network (CDN). 6
2 Example of a multicast tree. 9
3 A possible move in the merge neighborhood. 21
4 A possible move in the min-conflict neighborhood. 22
5 A possible move in the shift neighborhood. 23
6 A swap move. 24

List of Algorithms
1 Pseudocode of Hill climbing (minimization problem). 14
2 Pseudocode of Tabu Search. 16
3 Pseudocode of selectAdmissible(·). 16
4 Pseudocode of Iterated Local Search. 17
5 Pseudocode of Variable Neighborhood Descent. 18

1 INTRODUCTION 5

1 Introduction
Over the last years, real-time entertainment services such as streamed or
buffered video and audio have emerged and today contribute to a significant
part of the worldwide internet traffic. According to Sandvine Inc.’s report on
global broadband usage [21], traffic on real-time entertainment has more than
doubled from 12,6% in 2008 to 26,6% in 2009. Peer to Peer (P2P) traffic has
decreased from 31,6% to 20,4% in favor of Video-on-Demand (VoD) services
such as YouTube1.

In practice, uncoordinated streaming and progressive download technolo-
gies have achieved widespread distribution due to a lack of sophisticated mul-
ticast streaming technologies, but simultaneously suffer from major defects.
It is symptomatic for such True Video-on-Demand systems, to operate at low
performance/cost efficiency and to poorly scale with an increasing number
of requests and traffic generated [16].

A common approach to cope with these issues is to batch several requests
and broadcast the same content simultaneously to multiple sinks. This tech-
nique is called multicasting and brings two main benefits. On the one hand,
multicasting reduces congestion of network links by transmitting a stream
to all receivers only once and on the other hand, the content provider issues
the time of broadcasting, hence network resources can be scheduled more
effectively.

To determine the Quality of Service (QoS) of such a system from the
user’s perspective, performance measures such as latency, defection rate or
fairness can be specified. Ma and Shin [16] give a structured and extensive
overview of multicast Video-on-Demand systems, requirements, architectures
and discuss QoS measures.

Recently, several attempts have been made to develop and establish Push
Video-on-Demand technologies in the field of IPTV, where a content is re-
quested by a user and is then distributed to the user’s personal video recorder
or hard disk in times of lower network utilization, e.g over night. A tradeoff
that comes in mind with this approach is the user’s waiting time, which is
the time between a user issues a request and the content was downloaded
to the local device. Therefore, an upper bound must be guaranteed to the
user, e.g. a 24h interval. The obvious advantage of such a system is the
capability to bundle all requests for a certain period of time and a content

1http://www.youtube.com

http://www.youtube.com

1 INTRODUCTION 6

and simultaneously stream multiple contents at full network capacity.
The underlying network, called Content Distribution Network (CDN),

typically consists of several sinks, intermediate nodes and content sources.
Typically, intermediate nodes are servers, routers and switches. The most
basic instance of a CDN is a tree shaped network with a single source (the
content provider) distributing content to the leafs, i.e. the customers (see
Figure 1).

provider

router

user user

router

user user

Figure 1: A tree-like content distribution network (CDN).

The Repeated Content Download Problem (RCDP) is to find an assign-
ment for a number of multicast streams in a tree-like content distribution
network, which satisfies all requests within as few periods as possible and
does not exceed bandwidth limits of the underlying network [3].

In the last two decades, many researchers have worked on similar problems
or problems related to multicasting. Aggarwal et al. studied the effective-
ness of multicast streams in [1]. Furthermore, Wu et al. compare a greedy
algorithm for multicast packing to network coding in [25]. In [4], Chen, Gün-
lük and Yener discuss the packing of group multicast trees, that is multicast
trees with multiple sources, which is also referred as many-to-many multicas-
ting. In 1999, Wang et al. [24] show the application of a brunch-and-bound
algorithm to construct multicast trees.

Since the problem is strongly connected to the Steiner tree packing prob-
lem, which is to find a maximum number of Steiner trees covering a set of
terminal vertices, previous work on Steiner tree packing has strong influences
in multicast packing. In terms of the VoD it is to find as many edge-disjoint
Steiner trees in a network multi-graph as possible, rooted in the content
provider and covering all users. In [13], Jain et al. discuss an approxima-
tion algorithm for a similar problem. Furthermore, Randaccio and Atzori
proposed a genetic algorithm for another version of the problem in [22].

2 PROBLEM DEFINITION AND OBJECTIVES 7

In this thesis, we will tie in with Bessler’s formulation of the problem
in [3], as it provides a basic level of abstraction, focuses on the scheduling
aspects of the problem and brings major simplifications w.r.t. the network
topology. The aim of this thesis is to show the application of metaheuristic
techniques such as Tabu Search, Variable Neighborhood Descent and Iterated
Local Search to the problem, provide experimental results and come up with
an interpretation.

The remainder of this thesis is structured as follows: In Section 2, we will
develop a detailed formulation of the problem, suitable for the application
of metaheuristics. Section 3 briefly discusses a possible IP formulation given
by Bessler in [3]. In Section 4 and Section 5, we examine the applied meta-
heuristics in general and come up with a metaheuristic formulation of the
RCDP. Section 6 gives details on our implementation and finally, in Section
7, the experimental results will be analyzed.

2 Problem definition and objectives
Given a content distribution network, a number of users connected to it
and a Video-on-Demand system providing a selection of content objects for
purchase, it is generally known that the popularity of the content objects
follows a long-tail Zipf distribution [2,5,6]. Since the capacity of the installed
network is fixed and should be operated at a certain point of utilization and
the download rate for single titles even varies during the time of the day, it
is in the interest of the provider to use intelligent scheduling mechanisms to
deal with the upcoming requests. In this section, we will develop a consistent
formulation of the Repeated Content Download Problem before we proceed
with the proposed metaheuristics.

2.1 Formalization of the RCDP

A basic Video-on-Demand system consists of a content distribution network
with users located at the leafs, issuing requests for a selection of offered titles.
Let U be the set of users participating and let Q bet the set of requests
issued. Every request q ∈ Q is assigned to a user q(u) ∈ U and a content
title t(q) ∈ T in the set of requested titles T . Furthermore, dt ∈ R, dt > 0
defines the required link capacity for the download of title t.

2 PROBLEM DEFINITION AND OBJECTIVES 8

Definition 1. A Content Distribution Network (CDN) is a 4-tuple G =
(V,E, ζ, s), with (V,E) being a tree of order o ∈ N (i.e. the depth of the
tree) where V is the set of vertices, E is the set of edges, ζ : E → R+ a
function which assigns a capacity ce to every edge e ∈ E and s is the source
vertex of all streams.

Furthermore, let us specify the set of users U more precisely as U ⊂
V ∧ ∀u ∈ U ⇔ deg(u) = 1, i.e. all users are located at the leafs of the
tree. Given content distribution network G, there exists exactly one path
P = {v0, e0, v1, e1, . . . , en−1, vn}, with vi 6= vj ⇔ i 6= j in (V,E) from every
vertex vi to every vertex vj. In a CDN, a unicast stream is a path P between
the source v0 = s and a user vn ∈ U . The length of every such path P
is constrained by |P| = o and the maximum bandwidth of a path can be
calculated by

cP = min
e∈e(P)

ce,

where e(P) ⊂ E denotes the edges along P . Consequentially, a stream along
a path can only broadcast titles t ∈ T where dt ≤ cP applies.

Definition 2. A multicast tree T =
n⋃

i=1

Pi is the union of n unicast streams

broadcasting the same title t(Pi) = t(Pj), ∀i, j such that every edge e ∈ e(Pi)
and every vertex v ∈ v(Pi) is contained only once in T .

This statement reveals the outstanding advantage of a multicast appli-
cation compared to single unicast streams, which is the sharing of com-
mon edges in a distribution network. Figure 2 shows an example of such
a tree T = P1

⋃
P2 consisting of two streams P1 = {s, e4, v4, e0, v0} and

P2 = {s, e4, v4, e1, v1} broadcasting the same title. Due to the Definition 2,
edge e4 will be stressed only once with the demand dt of the broadcasted
title. We will later refer to a link’s capacity utilization as the congestion of
a link.

Furthermore, let S be the set of available periods and let the binary
variable zsT denote the assignment of a tree T ∈ M to the period s where
M denotes the set of all trees in the current assignment. The congestion λse
on an edge e in period s ∈ S can now be calculated as

λse =
∑
T ∈M

reT dt(T)z
s
T , (1)

2 PROBLEM DEFINITION AND OBJECTIVES 9

T

s

v4

v0

e0

v1

e1

e4

Figure 2: Example of a multicast tree.

where reT = 1⇔ e ∈ e(T) indicates that edge e is part of T and t is the title
broadcasted by T .

The Repeated Content Download Problem (RCDP) is to find an admissible
assignment, which is an arrangement of multicast treesM, such that every
request q ∈ Q is part of a tree T , which is assigned to one period and the
accumulated demand on no edge in any period exceeds the edge’s capacity
and the number of periods |S| needed to fulfill all requests is minimal. The
objective of the RCDP is to

min
∑

s∈S,T ∈M

zsT . (2)

In order to reduce the number of repetitions a content has to be broadcasted
and also to keep the assignment valid, further constraints must be defined.
Firstly, for every assignment the statement

λse ≤ ce, ∀e ∈ E,∀s ∈ S (3)

must hold to ensure that no bandwidth capacity on any edge in any period
is violated (further referred to as capacity constraint). Moreover, let xqT =
1⇔ t(q) = t(T) denote that request q is satisfied by tree T then∑

T ∈M

xqT = 1,∀q ∈ Q (4)

constraints that every request has to be part of a tree and therefore is satisfied
within some period. In further consequence, it has to be ensured that every

2 PROBLEM DEFINITION AND OBJECTIVES 10

tree is assigned to a period, which is expressed by∑
s∈S

zsT = 1,∀T ∈ M. (5)

2.2 Summary of symbols
Symbol Description
E Set of edges.
M Set of trees.
Q Set of requests.
S Set of periods.
T Set of titles.
U Set of users.
V Set of vertices.

e(X) Edges of X, where X can be a tree T or a path P .
t(X) Title of X, where X can be a request q, a path P or a tree T .
v(X) Vertices of X, where X can be a tree T or a path P .
λse Congestion on link e in period s.
xqT Binary variable. 1 if request q is satisfied by T .
zsT Binary variable. 1 if tree T is scheduled for period s.

2.3 NP-Completeness

In the last section, we gave an abstract definition of the problem. It can be
shown that the RCDP is NP-complete and no polynomial time algorithm
is known to solve the problem, unless P = NP . Therefore, a polynomial
time reduction of the BIN-PACKING problem to the decision variant of the
RCDP will be given by us.

Definition 3. The one dimensional BIN-PACKING problem is:

Input: A set of n items {a1, a2, . . . , an} to be packed into b ∈ N or
less bins of size c ∈ R.

Question: Is there an assignment f : {1, . . . , n} → {1, . . . , b} such that∑
f(i)=k

ai ≤ c,∀k = {1, . . . , b}?

Definition 4. The decision version of the RCDP is:

2 PROBLEM DEFINITION AND OBJECTIVES 11

Input: An instance of the RCDP and a k ∈ N.
Question: Is there a minimal assignment with |S| ≤ k?

Claim 1. The BIN-PACKING problem is NP-complete.

Proof. See Garey and Johnson [7, 14] for a details.

Claim 2. The decision variant of the RCDP is NP-complete.

Proof. To justify this claim, we first have to show the membership of the
RCDP in NP and in further consequence that it is NP-hard. To show the
membership, it is sufficient to guess a random assignment, which can be eval-
uated in polynomial time. To show the hardness, we assume that given an
instance of the BIN-PACKING problem, an instance of the RCDP decision
problem can be constructed by the following procedure in polynomial time.

Create an instance of a RCDP with T = {1, . . . , n}, |S| = b and a CDN
with |V | = 2. Due to the handshaking lemma and the connectivity of
a CDN, |E| = 1 must hold. Thus, edge (s, V \ s) connects the source
and a single sink. Furthermore, assign capacity ce = c,∀e ∈ E and let
di = ai,∀i = {1, . . . , n} denote that the demand of available titles equal
the weights of the items. Subsequently, create a request qi concerning ti-
tle i for every item ai,∀i = {1, . . . , n}. Therefore, |Q| = n and |T | = n.
Consequentially, the number of multicast trees is therefore restricted to

|M| = |T | = n.

Equations (4) and (5) imply that every single request becomes a tree and
Equation (4) can be discarded. Constraint (3) and (5) ensure that a CDN’s
capacity is not exceeded in any period and every tree is assigned to some
period. Therefore, a valid assignment x for an instance of the BIN-PACKING
problem is a valid assignment for an instance of the decision variant of the
RCDP with b = k and vice versa.

Suppose that we find an algorithm which computes a solution for an
instance of the BIN-PACKING problem which we have converted into an
instance of the RCDP by the given procedure, a polynomial-time algorithm
for the decision variant of the RCDP would yield a polynomial-time algorithm
for the one dimensional BIN-PACKING problem, which is known not to exist
(unless P = NP).

3 IP FORMULATION 12

3 IP formulation
In Section 2.1, we gave a very figurative definition of the problem. Above all,
we used the concept of trees to think of the problem. Bessler gives an integer
program (IP) formulation for the RCDP which uses trees rather implicitly [3].
In this work, we will briefly discuss the formulation to provide another point
of view to the reader. We have adapted the notation used by Bessler to our
notation to provide better comparability.

The major difference to the formulation given in Section 2.1 is that trees
are treated implicitly. A tree arises if a title is scheduled for broadcasting in
a certain period. Table 1 contains all symbols used in the formulation. The
IP is given as follows:

min
∑

t∈T,t∈S

zst (6)

subject to
∑
s∈S

xsq = 1, ∀q ∈ Q, (7)

∑
t∈T

retdt(q)z
s
t(q) ≤ ce,∀e ∈ E, s ∈ S, (8)

zst ≤
∑

q∈Q,t(q)=t

xsq, ∀t ∈ T, s ∈ S, (9)

zst ≥
1

S · T
∑

q∈Q,t(q)=t

xsq, ∀t ∈ T, s ∈ S. (10)

4 Local search techniques
In the last sections, we introduced the RCDP and developed a mathemat-
ical formulation. The goal is find a globally optimal assignment w.r.t. the
objective function (2) and numerous constraints (3), (4) and (5) within an
admissible number of computational steps. In other terms, we are looking for
an efficient algorithm, i.e. an algorithm running in polynomial time w.r.t. the
input size [7]. As we will see in Section 5.1, the exhaustive search space of the
RCDP is intractable for exact search algorithms. Moreover, in Section 2.3
we have shown that the RCDP is NP-hard. To the best of our knowledge,
there exists neither an exact algorithm for the RCDP nor an approximation

4 LOCAL SEARCH TECHNIQUES 13

Symbol Description
E Set of edges.
Q Set of requests.
S Set of periods.
T Set of titles.
U Set of users.
u(q) User u ∈ U that issues request q ∈ Q.
t(q) Title t ∈ T of request q ∈ Q.
d(t) Download rate for title t ∈ T .
xsq 1 if request q ∈ Q is scheduled for period s ∈ S.
zst 1 if title t ∈ T is scheduled for period s ∈ S.
ret 1 if title t is routed over edge e ∈ E.
ce Capacity of edge e ∈ E.

Table 1: Summary of symbols of the IP formulation.

algorithm. However, we will apply metaheuristics to the problem and show
that even for larger input sizes acceptable running times can be achieved.

The minimization variant of a general optimization problem can be writ-
ten as

min f(x)

so that x ∈ X, where f : X → R is an evaluation function and X is the set
of admissible solutions w.r.t. a number of constraints.

Furthermore, a general neighborhood function is defined as

N : X → P(X)

where P(X) = {U | U ⊆ X} is the power-set of X [10]. Consequentially,
Nm(x) denotes the set of neighbors of x which can be reached by a move m
and is further referred as to a neighborhood structure.

A solution candidate x∗ is called a global optimum or simply optimum, if
no x ∈ X exists with an objective lower than x∗:

f(x∗) ≤ f(x),∀x ∈ X.

A solution x∗L is called a local optimum with respect to a neighborhood N ,
if there exists no x ∈ N (x∗L) having an objective lower than x∗L:

f(x∗L) ≤ f(x),∀x ∈ N (x∗L).

4 LOCAL SEARCH TECHNIQUES 14

Several local search techniques, which are search procedures starting from
an often randomly generated initial solution moving towards better solutions,
have been suggested to solve combinatorial optimization problems. To pre-
vent the search from getting stuck in local optima, various approaches such
as Tabu Search, where certain neighbors are marked as tabu for a number
of iterations to explore other areas of the solution space, or Variable Neigh-
borhood Search, which uses multiple neighborhood structures to explore the
search space, are used. Each of these approaches comes with advantages and
disadvantages which we will discuss in the following.

4.1 Hill Climbing

A very simple approach for optimization problems is Hill Climbing [9, 20].
Starting from a random initial assignment xs, the algorithm generates a
number of neighbors n ∈ N , evaluates them and iteratively moves towards
better candidates until a global optimum is found or a termination condition
is reached. Algorithm 1 illustrates the basic idea.

Algorithm 1: Pseudocode of Hill climbing (minimization problem).
Input: Initial solution xs
x← xs1

repeat2

x′ ← select(N (x))3

if f(x′) < f(x) then4

x← x′5

until termination condition6

return x7

The function select(·) takes a set of neighbors as input and depending
on the implementation returns either the best or the first better candidate
found with respect to f . As a termination condition, a maximum number of
iterations or a fixed time duration can be set. Unfortunately, Hill Climbing as
simple as it is, is not enough sophisticated to escape local optima efficiently.
Therefore, it is often used as embedded procedure within other metaheuristics
such as Iterated Local Search or Variable Neighborhood Search.

4 LOCAL SEARCH TECHNIQUES 15

4.2 Tabu Search

Tabu Search was first proposed by Fred Glover [10] and targets at exploring
a wide range of neighbors by “locking” recently accepted neighbors or moves
in order to escape local optima [17]. Thus, the algorithm is prevented from
reverting recently made changes. Our implementation uses a recency based
memory, which blocks recently touched multicast trees for a fixed number of
iterations.

Let M : X → N be a function that denotes the iteration, a neighbor
xc−1 ∈ X recently has been accepted by the heuristic. A candidate xc ∈ X
explored in the neighborhood N (xc−1) will be accepted if it is the best so far
within the current local tour, i.e.

∀y ∈ N (xc−1) : f(xc) ≤ f(y)

and if xc is not tabu, denoted by

t+M(xc) ≤ c, (11)

where c is the current iteration and t is the number of iterations, a move is
tabu. However, it might happen that surpassing moves might be blocked.
Therefore, the neighbor will also be accepted if an aspiration criteria α ap-
plies. As an aspiration criteria, the degree of improvement w.r.t. the most
recently accepted neighbor xc−1 is used so that a candidate xc gets accepted
if

α ≤ 1− f(xc)

f(xc−1)

holds, even if it is tabu. Thus strong improvements will be approved.
Algorithm 2 illustrates the basic procedure of Tabu Search. The tabu

mechanism is simplified to set operations where x ∈ T ⇔ t + M(x) > c
defines that a move x ∈ X is tabu and x /∈ T ⇔ t + M(x) ≤ c permits a
move. If a neighbor gets accepted, T

⋃
x ⇔ M(x) := c adds it to the set of

tabu moves for the next c+ t iterations.
Moreover, the inner loop in Algorithm 2 corresponds to a local tour

started from the best solution found so far. Each local tour is guided by
the tabu mechanism as shown in Algorithm 3.

4.3 Iterated Local Search

In the last section, we have seen with Tabu Search a guided method to
explore the search space. As problems become harder and instance sizes

4 LOCAL SEARCH TECHNIQUES 16

Algorithm 2: Pseudocode of Tabu Search.
Input: Initial solution xs
x← xs1

xl ← x2

T = ∅3

repeat4

repeat5

x′ ← selectAdmissible(x,N (x))6

if f(x′) < f(xl) then7

xl ← x′8

T = T
⋃
xl9

until max iterations reached10

if f(xl) < f(x) then11

x← xl12

until termination condition13

return x14

Algorithm 3: Pseudocode of selectAdmissible(·).
Input: Local optimum x, set of neighbors N
foreach n ∈ N do1

if n /∈ T ∧ f(n) < f(x) ∨ applies(α, x, n) then2

x← n3

return x4

increase, the number of local optima and plateaus increases exponentially
[20]. Hill Climbing and Tabu Search very often can not find a path to escape.
Therefore, Iterated Local Search (ILS) was developed by Lourenço, Martin
and Stützle [15]. Starting from an initial solution xs, a local search procedure
is done leading to a local optimum x∗. In further consequence, a number
of (random) perturbations were applied. The structure and the number of
perturbations may also depend on the search history, possibly leading to
better exploration. Again, a local search is performed and a local minimum
x∗

′ obtained. Assuming that the “jump” and the subsequent search lead to
an overall improvement, the candidate is selected by some criterion, which

4 LOCAL SEARCH TECHNIQUES 17

again could depend on the search history. The power of ILS lies in both it’s
simpleness in the implementation and the execution as the perturbations can
be generated and applied very fast. Algorithm 4 demonstrates the basic ILS.

Algorithm 4: Pseudocode of Iterated Local Search.
Input: Initial solution xs
x∗ ← search(xs)1

repeat2

x′ ← perturbate(x∗, history)3

x∗′ ← search(x′)4

x∗ ← select(x∗′, x∗, history)5

until termination condition6

return x∗7

4.4 Variable Neighborhood Search

In the last sections, we introduced Tabu Search and Iterated Local Search.
Both aim at escaping local optima by effectively exploring a great number of
neighbors. We have not yet considered the fact that exploring the complete
neighborhood N (x) of a solution x ∈ X may not lead to a global optimum x∗

in reasonable time. Variable Neighborhood Search (VNS) was introduced by
Mladenović and Hansen in [11,12,19] and exploits the fact that a local opti-
mum x∗L w.r.t. a neighborhood structure is not necessarily optimal to another
neighborhood, but a global optimum x∗ is optimal w.r.t. all neighborhoods.

Let us denote by Nk(x) the k-th neighborhood of a solution x ∈ X. De-
pending on the implementation, the metaheuristic explores the kmax neigh-
borhood structures either systematically or randomly. In our approach, we
implemented the Variable Neighborhood Descent (VND) variant [8, 19] as
shown in Algorithm 5. The algorithm starts from the smallest neighborhood
and iteratively increases k until kmax is reached. However, the ordering of
the exploration N1 ⊂ N2 ⊂ · · · ⊂ Nmax is crucial and will be chosen in a
way so that smaller and computationally less complex neighborhoods will be
searched first. In Section 5.3, we will introduce various neighborhoods which
are used in our VND implementation.

5 METAHEURISTIC FORMULATION OF THE RCDP 18

Algorithm 5: Pseudocode of Variable Neighborhood Descent.
Input: Initial solution xs
x∗ ← xs1

k ← 02

repeat3

repeat4

x′ ← select(Nk(x))5

x∗′ ← search(x′)6

repeat7

xL
′ ← select(Nk(x∗′))8

x∗L
′ ← search(x′L)9

if x∗L′ < x∗′ then10

x∗′ ← x∗L
′11

k ← 012

break13

until max iterations reached14

until k > kmax15

k ← k + 116

until termination condition17

return x∗18

5 Metaheuristic formulation of the RCDP
In the last section, the basic algorithms of our approach have been discussed.
In this section, we will present a metaheuristic formulation for the RCDP
including a short estimation of the search space, the selection of a suitable
evaluation function and the definition of capable neighborhood structures.

5.1 Search space

The naive search space, which is the number of states to expand in the worst
case scenario in a search tree using an exact algorithm to decide whether an
instance of the RCDP has a valid solution or not, is exponential to the size
of the input. Solution vector coding will be used to justify this claim.

Claim 3. The exhaustive search space of the RCDP is in O(|S||Q|).

5 METAHEURISTIC FORMULATION OF THE RCDP 19

Proof. Suppose, the row vector ~v = {1, . . . , s}q denotes a state in the search
tree and vi is the i-th element of ~v, then vi states that request qi ∈ Q is is
assigned to period vi. As every request q ∈ Q can be satisfied in any period
s ∈ S, the number of possible states is |S||Q|.

Assuming that all multicast trees are maximal with respect to the number
of requests satisfied and can be assigned to every period without being split,
the search space is still O(|S||T |).

5.2 Evaluation function

In order to evaluate a possible solution candidate x ∈ X which was explored
in the neighborhood, we define the polynomial f : X → R as evaluation
function to express the fitness of the candidate. As the heuristic implemen-
tation also allows non-feasible assignments w.r.t. the constraints defined in
Section 2.1, the evaluation function is designed to consist of three parts: The
first part aims at reducing the overall congestion, as defined in Equation (1).
The congestion λse on link e ∈ E in period s ∈ S is defined as

λse =
∑
T ∈M

redt(T)z
s
T

and the overall exceeding can be written as a function e : X → R as

e(x) =
∑

e∈E,s∈S

max{0, λse − ce}, (12)

which should be minimized.
Moreover, we want to reduce the number of periods |S| needed to broad-

cast all requests. The third part of the objective, which is the number of
times a title is repeatedly distributed, should also be kept as small as possi-
ble. We can simply express this as the number of trees |M| needed to satisfy
all requests. After adding a multiplicative constant to each part to allow a
fine-grained control of the optimization procedure, the objective function f
can now be written as the sum of the the three weighted parts as

min f(x) = αe(x) + β|S|+ γ
∑

T ∈M,s∈S

zsT . (13)

As one can see, the objective consists of conflicting criteria so that by
reducing the number of periods, the splitting of large trees in favor of avoiding

5 METAHEURISTIC FORMULATION OF THE RCDP 20

congested links pays off. Therefore, a title will be broadcasted more often and
also the network utilization increases as less edges can be shared by multicast
trees. It is highly dependable on an operator’s network and cost structure
how to set the weights properly. Two major cases can be distinguished: A
low number of repetitions reduces the average utilization of the network and
increase the user’s waiting time for a title. Approaching a high operating level
in terms of working load will automatically increase the number of multicast
trees to a certain point. Assuming that |S| is fixed and the metaheuristic
yields a solution with e(x) = 0, then f is equivalent to the IP objective
defined in Section 3.

Based on the fact that every request has to be fulfilled within some period,
a lower bound for the evaluation function can be calculated. Assuming that
there exists an optimal assignment, i.e. the number of repetitions is minimal
(i.e. |M| − |T | = 0) and all trees can be scheduled to one period without
bandwidth exceeds, the lower bound of an instance of the RCDP is

LB(x) = β + γ|T |.

In the next section, we will introduce appropriate neighborhood structures
to take care of the different characteristics of the objective.

5.3 Neighborhood structures

Since we now have defined the evaluation function, we proceed with the intro-
duction of neighborhood structures. A neighborhood structure is a function
yielding solution candidates for a given solution. Three major aspects are
the efficient generation of neighbors, the size of a neighborhood structure and
the effectiveness w.r.t. the evaluation function. In the last section, we have
seen search procedures drawing neighbors either from single neighborhood
structures or from the complete neighborhood, which we have implemented
as the compound of all structures.

5.3.1 Merge neighborhood

As the name already reveals, the merge neighborhood consolidates two or
more multicast trees broadcasting the same title from either the same period
s or from multiple periods s1, s2, . . . , sn ∈ S. Both aim at improving the
objective by either decreasing the number of repetitions of the respective title
or by reducing the congestion through shared edges. Imagine an assignment

5 METAHEURISTIC FORMULATION OF THE RCDP 21

that violates the capacity constraint (3) on some upper edge e in period s.
By merging two trees T1 and T2, the congestion λse on edge e decreases if both
trees were already scheduled for the same period. In case of merging trees
from different periods, the congestion of e stays the same if the new larger
tree is scheduled for one of the two periods. If the new tree is assigned to
another period, the congestion of e decreases in both source periods. In any
case the number of trees in the assignment is shortened. Figure 3 shows the
merge of two trees.

T1

e

+

T2

e

=

T1
⋃
T2

e

Figure 3: A possible move in the merge neighborhood.

Let us denote by |M| the number of trees in an assignment and let |T |
be the number of titles requested by the users. The number of repetitions is
|M|− |T |. In Section 5.2, we considered the number of repetitions as a mea-
sure of fitness. Therefore, three major cases for the size of the neighborhood
can be distinguished: Either all repetitions arise from different titles, only
one title is broadcasted multiple times, or anything in between. The former
gives an upper bound for the size, namely O(|M| − |T |) neighbors.

Unfortunately, merges of large trees are likely to produce further capac-
ity exceeds which will be taken care of by neighborhood structures we will
introduce in the next sections.

5.3.2 Min-conflict neighborhood

In order to address a very contributive part of the evaluation function, namely
the number of exceeding edges and the accumulated overflow, a new neigh-
borhood structure is introduced. We call this the min-conflict neighborhood
as it tries to repair non-feasible assignments [18].

The neighborhood yields candidates by first identifying conflicting edges
and in further consequence splitting trees which participate to this conflict.
First, we define Fs ⊆ E as the set of edges so that for every edge in Fs,

5 METAHEURISTIC FORMULATION OF THE RCDP 22

the sum of demands of multicast trees stressing that edge in period s ∈ S,
exceeds the edge’s capacity. By that definition, the capacity constraint (3)
is violated in period s and Fs can be defined as:

∀e ∈ Fs :
∑
T ∈M

reT z
s
T dt(T) > ce. (14)

Subsequently, from all multicast trees assigned to this period, neighbors
were generated by subtracting vertices which have a path containing an ex-
ceeding edge. We refer to this operation as subset move, because it splits a
tree into two disjoint trees in such way that the new tree is subject to reas-
signment to another period. However, let us define a subtree U of a multicast
tree T as

U ⊂ T ⇔ ∀P ∈ U ⇒ P ∈ T

such that both T and U are broadcasting the same content title. A more
descriptive way to think of subtrees would be graph connectivity. Assuming
that we remove a conflicting edge from a tree scheduled in the respective
period, a new component would be created. The resulting component corre-
sponds to the (maximum) subtree, which again has to be connected to the
source to yield valid paths to the leafs. The subtree U is now scheduled for
another period s.

T1

e ∈ F
=

〈

T2

,

T3

〉

Figure 4: A possible move in the min-conflict neighborhood.

Figure 4 illustrates a possible outcome of the min-conflict neighborhood
structure. Edge e is indicted as conflicting and therefore T1 will be split into
two disjoint trees T2 and T3. From the example shown, we can conclude that
there exists at least one other tree issuing demand on edge e, which is also
considered as a possible candidate for the subset operation. In case there was
no other tree, this instance would never yield an admissible solution, as the

5 METAHEURISTIC FORMULATION OF THE RCDP 23

capacity constraint (3) could never be satisfied, no matter what operation is
applied or what period T1 and its subtrees are assigned to.

Furthermore, this neighborhood structure yields numerous candidates in-
cluding shifts and swaps of conflicting trees to other periods, as further de-
scribed in Section 5.3.3.

As the exact estimation of the size of the neighborhood is non-trivial
and depending on the size of |Fs|, which raises very fast with an increasing
number of |Q|, our implementation selects a f ∈ Fs randomly and generates
only a few neighbors, i.e. subtrees, for this conflict.

5.3.3 Shift neighborhood

The two previously described neighborhoods aim at constructing larger trees
and at reducing the number of exceeds. No neighborhood has yet been de-
fined to allow the reassignment of a complete tree T from period si to another
period sj. Such shift operations lead to re-ordering of tree assignments and
could be crucial to escape from local optima. The shift neighborhood Nshift(x)
yields neighbors of a candidate x ∈ X such that a tree Ti ∈ x being assigned
to period si in x is scheduled for period sj in y ∈ Nshift(x) and si 6= sj. Let
us denote by k the number of randomly selected and reassigned trees, then a
k-shift neighbor y ∈ Nshift results by the subsequent application of k shifts.
In further consequence, we extend the shift neighborhood to yield k-swap
neighbors. Figure 5 and Figure 6 respectively show a 1-shift and a 1-swap
move.

T

si sj

Figure 5: A possible move in the shift neighborhood.

5 METAHEURISTIC FORMULATION OF THE RCDP 24

Let m be the number of trees and s be the number of periods in an
assignment x. Each tree T ∈ M can now be scheduled for s−1 periods, as the
neighborhood relation should be irreflexive, i.e. x /∈ N (x). Assuming that a
tree can be selected only once for a shift within a neighbor of x, the size of the
k-shift neighborhood ism(s−1)(m−1)(s−1)(m−2)(s−1) . . . (m−k+1)(s−1).
Therefore the size of a k-shift neighborhood is O(mksk).

Moreover, we want to determine an upper bound for the size of the k-
swap neighborhood. Let us assume that for each i = {1, . . . , k} two trees
were selected. Again, no tree must be selected more than once and can not
be swapped with itself. For the sake of simplicity of our estimation of the
neighborhood size, we also allow swaps to take place within the same period
(since we don’t know the exact number of trees being scheduled for the same
period).

Theorem 1. The number of possible swaps in a k-swap neighborhood is
|Nswap| = m!

2k(m−2k)! (see Appendix for a proof).

Furthermore, we know that in a m-tree assignment, k is bound by 1 ≤
k ≤ bm

2
c. Consequentially the size of the k-swap neighborhood is O(m2k).

Therefore, we limit k by 1. Another reason for the limitation is that the
same result could be achieved by applying multiple subsequent swap and
shift moves.

T2T1

si sj

Figure 6: A swap move.

6 IMPLEMENTATION 25

5.3.4 Compress neighborhood

None of the neighborhood structures described above has the strong ability
to reduce the number of periods used in an assignment effectively because
all of them only touch a small number of trees in each operation and fur-
thermore, the application of several subsequent moves which could lead to
a an assignment having one period less is very unlikely. A possibility to re-
duce the number of periods used |S| is to reschedule all trees of a certain
period s ∈ S to the remaining periods S \ {s}. Therefore, let us introduce
the compress neighborhood, which is a relation Ncompress : X → P(X) with
x ∈ X, y ∈ Ncompress(x) such that |Sy| = |Sx|−1. In other words, the number
of periods used has decreased by one. In an assignment y ∈ Ncompress(x),
all trees which were scheduled for the last period sn in x are now randomly
assigned to some period s1, s2, . . . sn−1 in y with the same probability. The
size of Ncompress is O(1). Nevertheless, a move in this neighborhood is likely
to involve a great number of trees and to result in a large number of compu-
tations.

The effectiveness of the neighborhood clearly depends on the coefficient
β of the evaluation function (see Section 5.2). In case a large β was chosen,
the metaheuristic tends to select a neighbor from this neighborhood in favor
of decreasing |S| and in return possibly accepts a high number of exceeding
links in the remaining periods s1, s2, . . . , sn−1. Furthermore, the compress
neighborhood is only used for instances without a fixed number of periods.

6 Implementation
In the course of this work, implementations of the metaheuristics described
in Sections 4 and 5, have been established using the Java2 programming
language. We have chosen Java because of our prior knowledge and the
great tool support.

In order to support comparability to other parties, we have implemented
a SolutionChecker, which takes a solution and calculates the evaluation func-
tion according to Equation (13). As an input, the checker takes three simple
CSV (comma separated values) files:

• An instance of the RCDP containing |Q| tuples of format (t, u) denoting
that user u ∈ U has requested title t ∈ T .

2The Java Language Specifiction: http://java.sun.com/docs/books/jls/

http://java.sun.com/docs/books/jls/

7 EXPERIMENTAL ANALYSIS 26

• A file containing tuples of format (t, dt), with t ∈ T and dt ∈ R, dt > 0,
determining the demand of a title.

• A solution file containing tuples of format (t, s, {u1, . . . , un}), where
t ∈ T , s ∈ S and u1, . . . , un ∈ U , indicating that a title is broadcasted
to the specified users in given period.

All algorithms were implemented as depicted in Section 4. Unfortunately,
the overall calculation of f is computational intensive, therefore we added a
so called ∆-function, which is a function ∆ : X×X → R giving the improve-
ment or degradation of f after applying a move to x ∈ X. At the expense
of a higher memory demand, the application of all moves can be calculated
efficiently in constant time. However, the most expensive part is still the
neighborhood generation as it involves a lot of graph operations such as sub-
graph calculation, reachability and nearest common ancestor determination.

7 Experimental analysis
In the last sections, we discussed a metaheuristic approach to the RCDP
and presented details on our implementation. In this section, we will analyze
our methods and important parameters w.r.t. a number of questions, mostly
related to solution quality and runtimes. Due to the lack of real data from
a large VoD operator, as used in [6], our analysis limits to a number of
5 randomly generated instances which we consider as characteristic for the
problem. However, we will study the following questions:

A How do our metaheuristics perform in general?

B Are there any differences in performance w.r.t. solution quality/runtime?

C What is the largest (feasible) instance any of the heuristics is able to
solve?

D How many neighbors does each of the heuristics compare/accept?

7 EXPERIMENTAL ANALYSIS 27

E Do the heuristics address different parts of the evaluation function?

F How does the utilization of a CDN increase with an increasing number
of requests?

To answer these questions, let us first identify the parameters needed to
continue. For general comparison, the objective f and the average runtime t
were measured. Moreover, the number of neighbors compared (i.e. generated)
nc and the number of accepted neighbors na were recorded. Additionally, we
traced certain parts of the evaluation function namely the number of trees
|M| and the overall exceeding e(x) of the best solution x ∈ X found (see
Equation (12)). In order to answer the last question, the top-level utilization
u, which is the average network utilization on upper edges, is recorded. Table
2 shows a summary of all measured variables. All experiments were computed
using an Apple MacBook Pro, 2,66GHz Intel Core 2 Duo, 2x2GB 1066MHz
DDR3 SDRAM.

Symbol Description

e Exceeding in best solution.
f Value of the evaluation function of the best solution found.
M Number of trees in best solution.
na Number of accepted neighbors.
ng Number of neighbors generated.
r Number of title repetitions in the best solution.
t Run time until best solution was found.
u Top-level utilization [%] in best solution.

Table 2: Summary of variables measured.

The remainder of this section is structured as follows: First, we will define
the statistical methods used for comparison. In Section 7.2, the problem
instances and their generation will be discussed. In Section 7.3, we will
describe the parameters used for the experiments. Finally, we will discuss
the obtained results.

7 EXPERIMENTAL ANALYSIS 28

7.1 Statistical methods

In order to learn about the performance of our implementations, we need
methods, which allow us on the one hand to decide which parameters to use
with our algorithms and on the other hand, to draw significant conclusions
from the obtained results (such as: Heuristic A performs better than heuristic
B for instances larger than x.). Furthermore, we want to guarantee results
which are representative for our metaheuristics and reproducible for others.

Therefore, we consider a run of an algorithm on an instance as input as the
multi-dimensional random variable from a probability space (Ω,F , P) [23] as
the vector

X = (X1, . . . , Xn)ᵀ : Ω→ Rn,

whereX1 toXn denote the single random variables measured such as runtime
(t), solution quality (f) or neighbors compared (nc). A number of 30 runs for
each heuristic and instance were performed to gain a minimum of information
about the distribution ofX. Furthermore, the runtime and the objective were
obtained from the best solution found. A run was stopped if there was no
improvement for a number of 30 iterations3. A general time limit was not
set. In further consequence, for each dimension of X (see Section 7 and Table
2), we calculated the mean x, the median x̃ and the standard deviation σx
for the drawn samples.

Moreover, we use statistical significance tests to support or reject our
hypotheses. All statistical operations and tests were performed using the
software R4.

7.2 Instances

As already stated at the beginning of the section, we will use randomly
generated instances for our experiments. In [2, 5, 6], they have found that
the popularity of titles requested by customers in large VoD and streaming
systems follow a Zipf distribution, i.e. the number of downloads correlates to
the popularity of a title. Assuming a digital library containing a number of
n = 13000 downloadable titles {t1, t2, . . . , tn}, we determined the index i of

3We only count the iterations of the enclosing metaheuristic. Embedded search pro-
cedures were not taken into account (as often the number of iterations is fixed and the
strength of finding global optima lies in the enclosing metaheuristic).

4The R Project for Statistical Computing, http://www.r-project.org/

http://www.r-project.org/

7 EXPERIMENTAL ANALYSIS 29

the requested title ti for every request by

i =

⌊
1

U(0,001, 0,2)1,372

⌋
,

where U is the (continuous) uniform distribution. The resulting distribution
cuts off very popular objects, as the data simply could be cached by network
infrastructure which is near to the users. Furthermore, popular content may
be subject to user-centric or data-centric channel-multicast techniques as
described in [16]. However, we assigned each request a title and a randomly
chosen user with the restriction that no customer requests the same title
multiple times. Note that the set of titles T , defined in Section 2.1, contains
only the subset of all titles T ⊆ {t1, t2, . . . , tn} such that every t ∈ T is
requested by some user.

In further consequence, we assumed the CDN to be a tree-like, fixed
network specified by two vectors, the branching factors B of each tree-level
and a vector defining the capacities C assigned to each layer. Additionally,
|B| = |C| is required. For example, the vectors B = {10, 20, 30} and C =
{200, 100, 10} denote a CDN with 10 links on the top layer, 10 · 20 = 200 on
the 2nd and 10 · 20 · 30 = 6000 on the bottom layer. Therefore, the number
of users |U | is also 6000. Before we continue, let us give a more formal way
how to construct a valid CDN from B and C.

Given the two vectors B and C and a tree root s, a valid CDN G of oder
o := |B|, i.e. the depth of the tree, can be generated. Let V = {1, . . . , n}∪{s}
be the set of nodes of the tree and let E = {1, . . . , n} be the set of edges,
where n =

∑|B|
l=1

∏l
i=1 bi. The set of users U ⊆ V is the set of nodes located

at the bottom, i.e. U = {1, . . . ,
∏

b∈B b}. The capacity ce of an edge e ∈ E
can be calculated as follows: Let n(k) =

∏k
i=1 bi with 1 ≤ k ≤ |B| be the

number of edges on layer k then the maximum l ≤ |B| gives us the level of e
if and only if, e ≤

∑|B|
l=1 n(|B| − l− 1). Hence, the capacity of e is ce := C(l),

where C(l) is the i-th entry of C.
Additionally, we randomly generated the demand dt of all titles t ∈ T

using U(1.5, 3) as probability distribution. The properties of the generated
instances can be found in Table 3.

7.3 Parameter determination

The performance of the presented metaheuristics heavily depends on the
values of their parameters. In this section, we discuss the most important

7 EXPERIMENTAL ANALYSIS 30

] |Q| |U | Branching factors Capacities

1 2000 1000 {10, 10, 10} {100, 20, 10}
2 4000 2000 {10, 10, 20} {100, 20, 10}
3 8000 4000 {20, 20, 10} {100, 20, 10}
4 16000 8000 {10, 20, 40} {100, 20, 10}
5 32000 16000 {20, 20, 40} {100, 20, 10}

Table 3: Test instances used for the RCDP.

parameters and values used in our experiments. First, we determine the best
value for the tabu length used in Tabu Search (TS), then the perturbation
size of Iterated Local Search (ILS) will be investigated. A summary of all
configurations can be found in Table 4.

7.3.1 Tabu length

In Section 4.2, Tabu Search and its parameters, e.g. the tabu length t, were
introduced. The tabu length is the number of iterations a tree should be
blocked if it was part of a recently accepted move. To determine the optimal
length of the recency based memory, a randomly generated instance of the
8000-40005 class was used. The maximum number of periods |S| was set to
8 to obtain a problem accordingly hard. For each tabu length t, a number
of 30 runs were performed. As our prior interest is in short running times, a
tabu length of t = 12 will be used for further experiments. The full results
regarding t can be found in the Appendix.

7.3.2 Perturbation size

Since the performance of the Iterated Local Search depends on the size of
the perturbations [15], several experiments were performed to determine the
optimal value of p. Again, 30 runs on the same random 8000-4000 instance
were performed and an optimal value for p = 2 obtained. See the Appendix
for detailed results.

5B = {10, 10, 40}, C = {100, 20, 10}

7 EXPERIMENTAL ANALYSIS 31

Name Description Value

TS

α Aspiration criterion. f(x) < f(x∗L)
c Acceptance criterion. f(x) < f(y), y ∈ N (x)
l Max. local tour iterations. 30
t Tabu memory length. 12

Select Function Best

ILS
c Acceptance criterion. f(x) < f(x∗L)
l Max. local iterations. 10
p Perturbation size. 2

VND

c Acceptance criterion. f(x) < f(x∗L)
Max. iter. per neighborhood. 2

l Max. local tour iterations. 2
Max. local iterations. 2
Neighborhood structures. Nmerge ⊂ Nmin−conflict ⊂Ncompress ⊂ Nshift

Select Function Best

f
α Weight of capacity exceed. 50
β Weight of periods needed. 2
γ Weight of content repetitions. 10

Table 4: Summary of metaheuristics, parameters and values.

7.4 Results

We have performed a number of experiments with the configuration described
in the last section. In further consequence, we will give interpretations for
the obtained data and try to answer the questions raised in Section 7. Before
drawing conclusions about the performance of the metaheuristics, we need
to analyze the obtained data in a statistical manner.

First, we want to test whether the runtime of each algorithm, which is
the average time the best solution was found in a run given an instance of
the RCDP, is normally distributed. Therefore, we formulate the following
hypothesis:

H0 : t is normally distributed.
H1 : t is not normally distributed.

7 EXPERIMENTAL ANALYSIS 32

Performing a number of Shapiro-Wilk tests at a significance level of p = 0.05
on the results of the largest instance (i.e. instance 5) gives us the following
matrix which tells us whether the samples of the runs of an algorithm are
compatible with H0 or not:

TS VND ILS

f H0 H0 H1

M H0 H0 H0

na H0 H0 H0

ng H1 H1 H0

t H0 H1 H0

u H0 H0 H0

This gives us important information on which statistical tests we can apply
and which not.

Let us first start by analyzing the runtime t of the three algorithms.
A Welch test (p = 0.05) for the null hypothesis H0 : µtTS

= µtILS
and

H1 : µtTS
6= µtILS

shows no significance, hence we can conclude that the
samples obtained from TS and ILS arise from the same population with a
probability of 0.95. Since we know that tV ND is not normally distributed, we
perform a Wilcoxon-Mann-Whitney test (p = 0.05) with H0 : µtV ND

= µtTS

and H1 : µtV ND
6= µtTS

. As the test is significant, we must reject H0 and
assume H1. From that we conclude that VND in general converges faster
against the best solution than TS and ILS do (see Appendix, Table 8). Note
that no assumption about the quality of the solution can be made yet.

In a second step, we want to learn about the quality of the solutions
generated by the algorithms. Therefore, we perform a t-test with H0 : µfTS

=
µfV ND

and H1 : µfTS
< µfV ND

. As the test is significant, we are safe to
state that Tabu Search on average delivers better solutions than Variable
Neighborhood Descent. Additionally, we perform another test from which
we conclude that VND performs better than ILS. At this point, question B
can be answered: Regarding f , µfTS

< µfV ND
< µfILS

holds and regarding t,
µtV ND

< µtTS
= µtILS

holds.
Concerning question C, which is the largest instance our algorithms are

capable to solve, we can report that we tried to scale the CDN and the
number of requests to a maximum. The maximum heap size memory was set
to one gigabyte. At a number of |Q| = 256000 and |U | = 128000 we stopped

8 CONCLUSION AND FUTURE WORK 33

since we did not hit the memory limit and the metaheuristics were still able
to solve the given instance6 in tTS ≈ 360s, tV ND ≈ 135s, tILS ≈ 223s.

The next question to be answered is to determine the characteristics of
the neighborhood exploration (D). Therefore, we analyze two measures: The
number of generated/compared neighbors ng and the number of accepted
neighbors na

7. Table 10 indicates that TS generates a large number of
neighbors compared to the other heuristics but accepts only a few (good)
neighbors. We assume that the combination of the chosen tabu length and
a high number of local tour iterations force TS to explore a great number
of neighbors leading to a better solution quality. Furthermore, we can see
that ILS accepts a surprisingly great number of neighbors even though the
solution quality of ILS is moderate. We conclude that ILS leads to a lot of
small, but local improvements since the running time is worse compared to
TS and VLS. About the characteristics of VND we can state that the iter-
ative exploration of neighborhood structures results in a reasonable number
of generated neighbors in favor of fast convergence even though in average
TS surpasses VND in terms of solution quality. Moreover, there is a small
anomaly concerning the explored neighborhood of instance 2 which is due to
the varied capacities and branching factors of the instance (see Table 3).

Let us now focus on the last questions (E and F). As in our experiments,
the number of periods |S| was fixed and we only considered feasible solutions,
i.e. solutions having e(x) = 0, we look at the number of repetitions R = |M|−
|T | of titles (see Table 9). As expected, Tabu Search again is able to surpass
the other metaheuristics. Surprisingly, the average top level utilization TLU
is not substantially higher with VND and ILS even though one would think
that there exists a correlation between TLU and R (As a repetition forces
the complete content to be broadcasted over the network again.).

8 Conclusion and future work
In the course of this thesis, we discussed the Repeated Contend Download
Problem (RCDP), which is a problem occurring in the context of content
distribution and multicast tree scheduling. We gave a formal definition of the
problem similar to Bessler’s formulation in [3] but targeted at the application

6C = {300, 150, 10}, B = {20, 80, 80}, |S| = 8
7Note that neither ng nor na count unique neighbors.

8 CONCLUSION AND FUTURE WORK 34

of metaheuristics. Moreover, we showed that the RCDP is NP-complete and
no polynomial-time algorithm yielding an optimal solution can exist.

A major part of our work deals with the local search procedures, such
as Tabu Search, Variable Neighborhood Descent and Iterated Local Search,
which we all applied to the problem. However, we gave a metaheuristic formu-
lation including an evaluation function and various neighborhood structures.

The last part of our work contained an experimental analysis of the three
applied metaheuristics. First, we formulated our experiments as questions,
secondly, the procedure and the estimation of the parameters was explained.
Then the measured variables were defined to answer the questions. Finally,
we performed several statistical tests on the obtained data and gave inter-
pretations for the results.

We found that our implementation of Tabu Search, Variable Neighbor-
hood Descent and Iterated Local Search are capable of solving even large
instances of the RCDP showing different characteristics. For instance, Tabu
Search yields the best solutions at the expense of runtime. Variable Neighbor-
hood Descent outperforms Tabu Search and Iterated Local Search in terms
of runtime, but performs worse that Tabu Search w.r.t. solution quality.

In the future, experiments using data from large VoD systems should be
used to study the detailed characteristics of the presented algorithms and to
adjust the algorithm’s parameters. Furthermore, a rolling schedule, which
is the iterative re-scheduling after the last period was broadcasted and new
requests were added, could be implemented. However, we think that there is
still potential for all of the applied heuristics.

REFERENCES 35

References
[1] Vaneet Aggarwal, Robert Caldebank, Vijay Gopalakrishnan, Rittwik

Jana, K. K. Ramakrishnan, and Fang Yu. The effectiveness of intelligent
scheduling for multicast video-on-demand. In MM ’09: Proceedings of
the seventeen ACM international conference on Multimedia, pages 421–
430, New York, NY, USA, 2009. ACM.

[2] Jussara M. Almeida, Jeffrey Krueger, Derek L. Eager, and Mary K.
Vernon. Analysis of educational media server workloads. In NOSSDAV
’01: Proceedings of the 11th international workshop on Network and
operating systems support for digital audio and video, pages 21–30, New
York, NY, USA, 2001. ACM.

[3] S. Bessler. Optimized content distribution in a push-vod scenario. pages
161 –166, april 2008.

[4] Shiwen Chen, Oktay Günlük, and Bülent Yener. The multicast packing
problem. IEEE/ACM Trans. Netw., 8(3):311–318, 2000.

[5] Maureen Chesire, Alec Wolman, Geoffrey M. Voelker, and Henry M.
Levy. Measurement and analysis of a streaming-media workload. In
USITS’01: Proceedings of the 3rd conference on USENIX Symposium
on Internet Technologies and Systems, pages 1–1, Berkeley, CA, USA,
2001. USENIX Association.

[6] Roberto García, Xabiel G. Paneda, Victor Garcia, David Melendi, and
Manuel Vilas. Statistical characterization of a real video on demand
service: User behaviour and streaming-media workload analysis. Simu-
lation Modelling Practice and Theory, 15(6):672 – 689, 2007.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness (Series of Books in the
Mathematical Sciences). W. H. Freeman & Co Ltd, January 1979.

[8] Michel Gendreau and Jean-Yves Potvin. Metaheuristics in combinatorial
optimization. Annals OR, 140(1):189–213, 2005.

[9] Fred Glover. Tabu search - part i. INFORMS Journal on Computing,
1(3):190–206, 1989.

REFERENCES 36

[10] Fred Glover and Fred Laguna. Tabu Search. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1997.

[11] Pierre Hansen and Nenad Mladenovic. Variable neighborhood search:
Principles and applications. European Journal of Operational Research,
130(3):449 – 467, 2001.

[12] Pierre Hansen and Nenad Mladenović. Variable neighborhood search.
In Handbook of Metaheuristics, pages 145–184. Springer, 2003.

[13] Kamal Jain, Mohammad Mahdian, and Mohammad R. Salavatipour.
Packing steiner trees. In in Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA, pages 266–274, 2003.

[14] Ming-Yang Kao, editor. Encyclopedia of Algorithms. Springer, 2008.

[15] H.R. Lourenço, O. Martin, and T. Stützle. A beginner’s introduction
to iterated local search. In Proceedings of the Fourth Metaheuristics
International Conference, volume 1, pages 1–6, 2001.

[16] Huadong Ma and Kang G. Shin. Multicast video-on-demand services.
ACM Computer Communication Review, 32:2002, 2002.

[17] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern
Heuristics. Springer, December 2004.

[18] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip
Laird. Minimizing conflicts: A heuristic repair method for constraint-
satisfaction and scheduling problems. ARTIFICIAL INTELLIGENCE,
58(1):161–205, 1992.

[19] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers
& Operations Research, 24(11):1097 – 1100, 1997.

[20] S. J. Russell and Norvig. Artificial Intelligence: A Modern Approach
(Second Edition). Prentice Hall, 2003.

[21] Sandvine. 2009 global broadband phenomena. Technical report, Sand-
vine Inc., 2009.

REFERENCES 37

[22] L. Sanna Randaccio and L. Atzori. Group multicast routing problem: A
genetic algorithms based approach. Comput. Netw., 51(14):3989–4004,
2007.

[23] Reinhard Viertl. Einführung in die Stochastik (Third Edition). Springer,
2003.

[24] Chu-Fu Wang, Bo-Rong Lai, and Rong-Hong Jan. Optimum multicast
of multimedia streams. Comput. Oper. Res., 26(5):461–480, 1999.

[25] Yunnan Wu, Philip A. Chou, and Kamal Jain. A comparison of network
coding and tree packing. In IN PROC. 2004 IEEE INTERNATIONAL
SYMPOSIUM ON INFORMATION THEORY (ISIT 2004, page 143,
2004.

REFERENCES 38

Appendix

Proof of Theorem 1
Claim 4. We want to show by induction that

m(m− 1)

2

(m− 2)(m− 3)

2
. . .

(m− 2(k − 1))(m− 2(k − 1)− 1)

2
=

m!

2k(m− 2k)!
.

holds for every 1 ≤ k ≤ bm2 c.

Proof. Induction basis: k = 1

m(m− 1)

2
=

m!

21(m− 2)!

m(m− 1) =
m!

(m− 2)!

m(m− 1) =
m(m− 1)(m− 2) . . . (m− (m− 1))

(m− 2)!

m(m− 1) =m(m− 1)

Induction step: k + 1

m(m− 1)

2
. . .

(m− 2(k + 1− 1))(m− 2(k + 1− 1)− 1)

2
=

m!

2k+1(m− 2(k + 1))!

m(m− 1)

2
. . .

(m− 2k)(m− 2k − 1)

2
=

m!

2k+1(m− 2(k + 1))!

m(m− 1) . . . (m− 2k − 1) =
m!

(m− 2k − 2)!

m(m− 1) . . . (m− 2k − 1) =
m(m− 1) . . . (m− 2k − 1)(m− 2k − 2)!

(m− 2k − 2)!

m(m− 1) . . . (m− 2k − 1) =m(m− 1) . . . (m− 2k − 1)

REFERENCES 39

Tabu length

t Z̄ Z̃ σZ t̄ [ms] t̃ [ms] σt [ms]

0 7858.33 7861 18.88 6431.63 4418 3841
2 7856.67 7851 25.45 8084.07 5111 5745.12
4 7863 7866 20.37 7875.13 6564 4735.63
6 7866.33 7866 16.5 6913.43 4952 5631.14
8 7867.33 7866 22.55 7637.43 5533 4643.46
10 7864.67 7866 22.24 6662.8 5066 3462.56
12 7867.67 7871 22.14 6207 4340 4178.01
14 7854.67 7856 19.43 9369.03 8394 5854.97
16 7865.67 7861 21.73 8228.27 7827 3918.11

Table 5: Comparison of various tabu lengths used for Tabu Search.

Perturbation size

p Z̄ Z̃ σZ t̄ [ms] t̃ [ms] σt [ms]

1 8183 8171 63.81 1277 0 1816.01
2 8164 8166 59.69 1555 0 2581.63
3 8167 8166 50.89 1742 0 2049.42
4 8201 8181 88.35 1884 0 3204.23

Table 6: Perturbation size of ILS using Hill Climbing as embedded local
search.

REFERENCES 40

Results
In
st
.
|S
|

T
S

V
N
D

IL
S

Z̄
Z̃

σ
Z

Z̄
Z̃

σ
Z

Z̄
Z̃

σ
Z

1
8

33
36

33
36

0
33

36
33

36
0

33
36

33
36

0
2

8
51

57
51

56
3.
05

51
59

51
56

5.
96

51
58

.3
3

51
56

5.
04

3
8

78
16

78
16

0
78

16
.3
3

78
16

1.
83

78
16

78
16

0
4

8
11
76

1.
33

11
76

1
54

.0
6

11
95

5.
33

11
95

1
73

.5
3

12
09

5.
67

12
09

6
10

9.
59

5
8

18
00

6.
73

18
01

6
13

4.
4

18
46

0.
33

18
45

6
98

.6
3

18
73

7.
43

18
71

1
29

6.
93

Ta
bl
e
7:

E
va
lu
at
io
n
fu
nc
ti
on

.

In
st
.
|S
|

T
S

V
N
D

IL
S

t̄
[m

s]
t̃
[m

s]
σ
t
[m

s]
t̄
[m

s]
t̃
[m

s]
σ
t
[m

s]
t̄
[m

s]
t̃
[m

s]
σ
t
[m

s]

1
8

1.
97

0
7.
49

3.
83

0
11

.7
7

1.
7

0
4.
76

2
8

20
0.
77

15
6

19
1.
93

10
6.
57

98
45

74
.1

72
33
.2
3

3
8

52
8.
7

39
7

65
5.
91

11
4.
8

14
0

60
.1
5

34
.3
3

32
27

.8
9

4
8

84
09

.2
7

73
09

37
16

.0
7

54
48

44
63

24
17

.7
8

96
39

.4
3

94
76
.5

20
63

.7
9

5
8

35
41

1.
03

34
54

9.
5

94
27

.5
6

21
60

9.
47

20
26

3
52
94

.8
3

64
30

3.
07

65
50

3.
5

95
56

.6
3

Ta
bl
e
8:

R
un

ni
ng

ti
m
es
.

REFERENCES 41

In
st
.
|S
|
|T
|

T
S

V
N
D

IL
S

|M
|

R
T
L
U

[%
]
|M
|

R
T
L
U

[%
]
|M
|

R
T
L
U

[%
]

1
8

33
2

33
2

0
23

.0
1

33
2

0
23

.0
1

33
2

0
23

.0
1

2
8

51
4

51
4.
1

0.
1

38
.5
6

51
4.
3

0.
3

38
.5
7

51
4.
23

0.
23

38
.5
7

3
8

78
0

78
0

0
37

.4
2

78
0.
03

0.
03

37
.4
2

78
0

0
37

.4
2

4
8

11
41

11
74

.5
3

33
.5
3

85
.6

11
93

.9
3

52
.9
3

86
.0
5

12
07

.9
7

66
.9
7

86
.3
2

5
8

16
90

17
89

.8
7

99
.8
7

87
.1

18
44

.4
3

15
4.
43

87
.6
6

18
66

.6
3

17
6.
63

87
.9
1

Ta
bl
e
9:

Sp
lit
ti
ng

ra
te

an
d
to
p
le
ve
lu

ti
liz
at
io
n.

In
st
.
|S
|

T
S

V
N
D

IL
S

n
g

n
a

n
g

n
a

n
g

n
a

1
8

30
2.
07

0.
07

32
.2

0.
03

61
.4

0.
2

2
8

52
1.
87

5.
23

77
.0
7

5.
5

10
6.
33

6.
77

3
8

12
97

.8
1.
23

10
5.
53

0.
73

17
2.
4

1.
77

4
8

24
32

.3
3

13
4.
53

12
96

.8
15

3.
07

16
29

.7
20

8.
2

5
8

63
66

.7
7

30
9.
37

31
21

.9
34

8.
27

50
13

.9
3

62
6.
97

Ta
bl
e
10

:
N
ei
gh

bo
rh
oo

d

	1 Introduction
	2 Problem definition and objectives
	2.1 Formalization of the RCDP
	2.2 Summary of symbols
	2.3 NP-Completeness

	3 IP formulation
	4 Local search techniques
	4.1 Hill Climbing
	4.2 Tabu Search
	4.3 Iterated Local Search
	4.4 Variable Neighborhood Search

	5 Metaheuristic formulation of the RCDP
	5.1 Search space
	5.2 Evaluation function
	5.3 Neighborhood structures
	5.3.1 Merge neighborhood
	5.3.2 Min-conflict neighborhood
	5.3.3 Shift neighborhood
	5.3.4 Compress neighborhood

	6 Implementation
	7 Experimental analysis
	7.1 Statistical methods
	7.2 Instances
	7.3 Parameter determination
	7.3.1 Tabu length
	7.3.2 Perturbation size

	7.4 Results

	8 Conclusion and future work

